

Review Paper:

Acute Promyelocytic Leukemia Unraveled: Biotechnological Approaches in Targeted Therapies and Molecular Mechanisms - A Review

Nair Arun R.^{1*}, Venkatesan H.¹, Soumya R.S.² and Sridevi M.³

1. Vinayaka Mission's Homoeopathic Medical College and Hospital, A Constituent College of Vinayaka Mission's Research Foundation (Deemed to be University), Salem, Tamil Nadu, INDIA

2. Department of Biochemistry, Pushpagiri Research centre, Pushpagiri Institute of Medical Science and Research Centre, Pushpagiri Medical Society, Thiruvalla, Kerala, INDIA

3. Department of Biotechnology, Vinayaka Mission's Kirupananda Variyar Engineering College (VMKVEC), A Constituent College of Vinayaka Mission's Research Foundation (Deemed to be University), Salem, Tamil Nadu, INDIA

*dr.arunramagiri@gmail.com

Abstract

Acute Promyelocytic Leukemia (APL), a rare subclass of hematological disorder of Acute Myeloid Leukemia, is distinguished due to the existence of promyelocytic leukemia with retinoic acid receptor (PML-RAR α) fusion protein. These fusion proteins will disturb and manipulate the normal cell differentiation of leukocytes and will navigate the leukemogenesis. The commencement of target therapies like All-Trans Retinoic acid in combination with arsenic trioxide has drastically altered the treatment prospects regarding APL, handing over extraordinary remissions and better survival outcomes to the medical world.

Biotechnological advancement has elucidated the molecular details of the disease which has helped in the creation and development of novel diagnostic tools and therapeutic strategies. Collective actions of ATRA and ATO will disintegrate the PML-RAR α fusion protein, will induce apoptosis and will restore normal cell differentiation, thereby bringing out the importance of blending medicines in treatment and targeted therapies in APL management. Over and above, medical biotechnology has unlocked genomic and proteomic assessment and evaluation and uncovered new genetic aberrations and pathways with APL. This study also addresses treatment difficulties like relapse and therapeutic resistance, calling attention to the need for more innovative approaches using biotechnology. Biotechnology has lifted APL therapeutic management to a new high standard for targeted therapies in blood-related cancers by integrating molecular biology with clinical applications.

Keywords: Acute Promyelocytic Leukemia, ATRA, ATO, PML-RAR α Fusion Protein, Targeted Therapies.

Introduction

Leukemia, is a hematological disorder explained as the clonal spread of abnormal white blood (leukemic) cells within the bone marrow.³⁴ Until the 20th century, leukemia

was acknowledged as a systemic disease as well as a polygenic disorder.³⁶ Abnormal white blood cell production can be of primary or secondary reason. Based upon the rapidity of multiplication and seat of origin, leukemia is categorised into two main classifications, one of nature i.e. acute or chronic and the other based on clone i.e. myeloid or lymphoid.¹ In 1957, a hematologist named Lief Hillestad, a Norwegian citizen, initially explained APL.³³ APL is designated as an uncommon variant of Acute Myeloid Leukemia (AML-M3), identified by the translocation of chromosomal translocation t(15;17) (q24;q21). The outcome is the amalgamation of PML with retinoic acid receptor- α genes and a chimeric protein.²

Abnormal promyelocytes accumulate within bone marrow along with the peripheral blood (PB) of patients with APL, a subtype of AML that is both unique and aggressive. Rapid onset and sometimes fatal coagulopathies make APL, which accounts for about 10-15% of AML patients, a major therapeutic issue. The signature chromosomal translocation t(15;17), which causes the origination of promyelocytic leukemia and retinoic acid receptor fusion protein, makes this disease distinct from other types of leukemias. This oncogene causes an overabundance of immature promyelocytes by improperly blocking retinoic acid transmission, which interrupts the typical myeloid cell differentiation process. The mainstay of conventional APL treatment, intense chemotherapy, had a long list of side effects including high toxicity, poor effectiveness and recurrence rates.

Patients saw ideal results due to the failure to adequately address the disease's molecular basis. Timely identification and new therapeutic options were important because of the additional hazards posed by the coagulopathies characteristics of APL, which commonly manifest as disseminated intravascular coagulation (DIC). A significant change in the way APL treatment occurs using the introduction of targeted medications, consisting of all-trans-retinoic acid (ATRA) and arsenic trioxide (AS₂O₃) (ATO). Arsenic trioxide causes apoptosis and the breakdown of the PML-RAR α fusion protein, while ATRA, a derivative of retinoic acid, induces differentiation in leukemic promyelocytes. By working in tandem, these treatments

have decreased the need for conventional chemotherapy while simultaneously increasing survival rates and putting patients into remission.

Nevertheless, greater innovation is still required to address difficulties including relapse, accessibility in resource-limited areas and resistance to therapy, even with these breakthroughs.⁶ In light of these difficulties, biotechnology has been essential in improving APL management. Molecular biology methods including cytogenetics and fluorescence *in situ* hybridization (short as FISH), enabled the discovery of the PML/RAR α fusion protein. We now know more about the genetic and molecular pathways that cause APL. The development of targeted medicines and improved diagnostic precision has been made possible by these biotechnological techniques. This has allowed for the early detection and monitoring of minimal residual disease (MRD).

This study aims to give a thorough explanation of APL by covering its treatment history, the effects and mechanisms of targeted medicines like ATRA and ATO and the role of biotechnology in the disease knowledge and management. Through an examination of these factors, this review seeks to emphasize the revolutionary impact of biotechnology on APL studies and to draw attention to potential future developments in diagnosis and treatment.⁵

Historical Perspective

Early Understanding of APL: The concept of APL as a separate subtype of acute leukemia was initially proposed in the middle of the twentieth century. A high susceptibility to coagulopathies, such as DIC and the buildup of aberrant promyelocytes are clinical hallmarks. Among the most deadly types of acute leukemia, APL was caused by these problems. Bone marrow aspirates' morphological analysis, specifically, the hallmark hypergranular appearance of promyelocytes, was the mainstay of early diagnosis.⁹

Uncovering PML-RAR α : Understanding APL existed greatly in the 1980s when the chromosomal translocation t(15;17) was identified. Cytogenetic investigations revealed that this translocation caused the fusion of two genes: the promyelocytic leukemia (PML) gene situated on chromosome 15, along with the retinoic acid receptor-alpha (RAR α) gene residing on chromosome 17. During the pathogenesis of acute promyelocytic leukemia, the fusion of the PML-RAR α gene is crucial and gives on to the realignment of PML and RARA genes. They modify the micro-level structural changes in the nuclear bodies (NBs), causing an upset in the functions of nuclear microspeckles. Later, it was understood that PML-RAR α can be managed by combined therapeutic effects (chemotherapy) of all-trans-retinoic acid along with arsenic trioxide (ATO) (AS₂O₃).^{7,17,27,32}

Introduction of Targeted Therapy (ATRA) Concepts: Acute promyelocytic leukemia (APL) therapy witnessed a

number of modifications over the past several decades. All-trans retinoic acid (ATRA) was developed in the 1980s, considered as the most important milestone in the management of APL. Pharmacological doses have proven to promote the development of cell differentiation. The PML-RAR α fusion protein's effects were mitigated by the introduction of ATRA, a differentiation treatment. After ATRA restored retinoic acid transmission, leukemic promyelocytes were driven to differentiate into mature granulocytes and many patients experienced quick remission. This groundbreaking method significantly improved the prognosis for APL which had previously been a condition with a high mortality rate.^{40,42}

Challenges faced with ATRA Monotherapy: Early targeted medicines nevertheless had their share of problems, despite these improvements. With the help of the ligand binding domain of RAR α , all-trans-retinoic acid (ATRA) binds with PML RAR α protein and induces the downstream transcription, leading to a complete remission of the APL. Later, it was evident that ATRA monotherapy results in a high relapse rate of APL. Due to subsequent mutations or epigenetic alterations, a considerable number of patients were resistant to ATRA, which made the PML-RAR α fusion protein less treatable. Additionally, relapses frequently occurred, calling for salvage regimens or blend (combination of two or more drugs) therapy.^{11,55}

Current Targeted Therapies - ATRA and ATO

With the advent of targeted medicines, especially ATRA and arsenic trioxide, the treatment of APL experienced a dramatic shift. The molecular pathophysiology (leukemogenesis) of APL, namely the PML-RAR α fusion protein, is directly addressed by these medicines, which have greatly enhanced patients' quality of life, survival rates and duration of remission.

Development of ATRA: In the Initial period (1980s), chemotherapy drugs like idarubicin, cytosine arabinoside and daunorubicin were considered the preliminary line of treatment for APL patients. As a differentiation-inducing drug, ATRA was initially released in the late 1980s. It is a derivative of retinoic acid. The underlying molecular abnormality in APL is targeted by ATRA, in contrast to standard chemotherapeutic drugs that non-selectively destroy rapidly dividing cells. The PML-RAR α fusion protein prevents promyelocyte development by reserve dominant-negative (-ve) control of retinoic acid signaling. Binding with the RAR α part of the protein, ATRA restores transcription of genes needed for differentiation, thus overcoming this repression. The therapeutic outcomes of ATRA are mostly arbitrated by retinoic acid receptors (RARS) and retinoid X receptors (RXRS).^{13,30,39,57}

Development of ATO: ATRA used in monotherapy was not successful because of multiple factors like retinoid resistance, half-life in plasma and frequent remissions. In the 1990s, arsenic trioxide (ATO), a compound with roots in

traditional Chinese medicine, was first utilized to treat recurrent APL. It works differently from ATRA, yet it complements it. Later on, it was understood that ATO has the potential to reverse transcription-suppression and alter the gene-expression in cells.

ATO induces oxidative stress and promotes the destruction of PML-RAR α protein across proteasomal mechanisms, thereby earmarking it directly. This mechanism renders ATO highly efficient, even in patients resistant to ATRA, by inducing cell death and interfering with the survival of leukemic cells. The monotherapy of ATRA, ATO, as a single therapeutic agent, also faced issues of remission and resistance.^{3,4,50}

Therapeutic Outcomes: The Monotherapy using ATRA or ATO did not give successful outcomes. Many difficulties and challenges were experienced during the evaluation of treatment outcomes. As a result, the combined use of both drugs becomes a novel treatment in the management of APL. The results of treating APL have been greatly enhanced since the development of ATRA and ATO. There was a less than 20% 5-year survival rate for APL before their use. Patient survival rates in the low and intermediate risk categories currently surpass 90% because of these combined targeted medicines.^{45,54}

When used together, ATRA and ATO not only reduce the likelihood of recurrence while simultaneously inducing remission more quickly. This combined therapy consistently produces long-lasting molecular remission in patients, as per the extended monitoring studies. Interestingly, many of these patients were able to avoid harsh chemotherapy altogether. Additionally, APL survivors' quality of life has been greatly enhanced due to the decrease in treatment-related toxicity.^{19,25}

Resistance and Limitations using a combination of ATRA and ATO: The blend therapy using ATRA and ATO has completely transformed the prognosis during treatment of the APL and it has been redefined as curable rather than incurable. Despite the progress, several issues, including the resistance to ATRA along with ATO, are still a problem in clinical practice. Mutations within the ligand-binding domain of the RAR α part of the PML/RAR α protein sometimes cause resistance to ATRA by making it incapable of binding retinoic acid. Resistance can also be caused by epigenetic alterations such as DNA methylation and histone acetylation. Mutations impacting the PML domain of the fusion protein or changes in apoptotic pathways have been associated with rare instances of ATO resistance.^{31,49,60}

Biotechnological Contributions to APL Therapies

The diagnosis, molecular research and treatment development of Acute Promyelocytic Leukemia (APL) have all been revolutionized by biotechnology. Our understanding of the etiology of APL has been increased, early detection skills have been enhanced and effective targeted medicines

have been developed. We have made use of techniques such as genomic sequencing, proteomics and molecular biology.

Diagnostic Advances: Biotechnology has brought State-of-the-Art methods that have transformed the process of accurately diagnosing and monitoring APL, which are crucial for effective treatment.

Fluorescence *in situ* Hybridization (FISH): The translocation of the (15;17) chromosome, which is distinctive of APL, can be detected using the fluorescently labelled DNA probes, which are used in the cytogenetic technique known as FISH. To provide an accurate diagnosis and separation from other types of leukemia, this approach allows for imaging of the PML-RAR α gene within patient samples.³⁷

Moreover, FISH is able to identify all the alternative translocations happening in RARA and not in PML. It can serve both as a specific diagnostic tool for APL and also to monitor prognosis and stages of disease in therapy.¹⁰

Reverse transcription polymerase chain reaction (RT-PCR): RT-PCR's unmatched sensitivity in identifying the PML-RAR α transcript has made it an indispensable tool in molecular diagnostics. When it comes to tracking MRD both during and after treatment, real-time qPCR is invaluable. Quantifying fusion transcript levels allows clinicians to evaluate therapy effectiveness and to identify early indications of relapse, enabling them to intervene promptly. RT -PCR assays can detect the PML-RARA transcript of at least 50 pg of total RNA.^{15,56}

Molecular Research: Critical insights into the pathophysiology, resistance mechanisms and possible treatment targets of APL have been uncovered through the substantial molecular research that has been propelled by biotechnology.²⁰ Molecular studies revealed that PML-RAR α transits can configure a heterodimer along with retinoid X receptors (RXR) and wild-type PML.⁵³ In a minimal group of APL, a variant translocation of t(11;17) has been identified through molecular and cytogenetic assessments. In such incidences, the RAR α transit gene was fused with a new gene named PLZF seen in 11q23, forming PLZF-RAR α , similar to PML/RAR α .⁴⁷

Genomic and Proteomic Studies: Genomic research has shed light on APL's genetic makeup, demonstrating how the PML-RAR α protein contributes to the evolution of leukemia. To round out these results, proteomic studies have found APL cell signalling networks and dysregulated proteins. Taken as a whole, these investigations have illuminated critical treatment gaps given a thorough grasp of the molecular anomalies that drive APL.^{18,26,59}

Insights into Resistance Mechanisms: Research into how the body fights back against targeted treatments like ATRA and ATO has greatly benefited.

Table 1
Key Biotechnological Approaches in APL

Technique	Application	Impact
FISH ³⁷	Detects PML-RAR α fusion gene.	Enables precise diagnosis.
PCR ⁵⁶	Amplifies PML-RAR α transcripts.	Facilitates early detection and MRD.
NGS ²³	Sequences the APL genome.	Identifies mutations and resistance.
CRISPR-Cas9 ³⁸	Edits APL-related genes.	Validates therapeutic targets.
Proteomics ⁴¹	Studies protein expression.	Reveals biomarkers and pathways.

An example is how genome sequencing has found mutations that give inclination to ATRA in the RAR α portion of the PML-RAR α protein. The establishment of the all-trans-retinoic acid (ATRA) reinstates the autophagy in APL cells.⁴¹ Similarly, proteomic studies have shown changes in apoptotic pathways, which could be the basis for ATO resistance. To combat resistance, these findings have guided the creation of new retinoids and combinatorial therapy approaches.¹⁶

Acute Promyelocytic Leukemia (APL) Molecular and Genetic Basis

The PML-RAR α fusion protein, which is exclusive to APL, illustrates how genetic and epigenetic variables interact intricately in the process of leukemogenesis. Researchers have discovered new therapeutic targets and a better understanding of the disease origin due to CRISPR, RNA sequencing and epigenetic profiling⁴³. Both abnormal and fusion proteins of APL were identified through molecular studies and shed light on the properties of APL phenotypes. Molecular diagnosis and prompt evaluation of the clone during the treatments are the two gifts of molecular and genetic involvement of APL.²¹

Inhibiting Gene Expression: It is also understood that the fusion protein suppresses genes essential for myeloid development by forming abnormal complexes with transcriptional co-repressors. The inhibition of RAR α causes a negative normal feedback loop of retinoic acid (RA) on its receptors.^{29,58}

Interfering with Apoptosis: The PML/RAR α fusion gene has a pivotal role in the development of leukemia cells using the regulatory pathways intervened by PML and by way of antagonizing retinoic acid (RA) signaling.¹² Leukemic transformations are promoted and apoptotic signaling pathways are impaired as a result of its disruption of nuclear body formation. As a result, the bone marrow develops the hallmark APL buildup of immature promyelocytes.⁴⁸

Biotechnology's Role in Discovery: A breakthrough in APL research, made possible by biotechnological advancements, was the identification of PML-RAR α . It also enables the target therapy via advancement of drugs like ATRA and ATO.⁵² In cytogenetics, the t(15;1) translocation was first recognized as a characteristic of APL by early karyotyping methods.²⁸ In molecular cloning and PCR, the fusion gene could be easily isolated and sequenced, proving

its involvement in APL. Clarification of the genetic defects of t(15;17) had an exceptional impact on the treatment of APL.²² The fusion gene was validated as a diagnostic marker when FISH verified its presence in patient samples.⁴⁴

The investigation over the PML nuclear bodies (PML NBs) has unfolded vast significance in the degradation of proteins and suppression of tumor cells beyond the APL. It has opened new avenues for the therapeutic management of other carcinomas and several other diseases.¹⁴

Discussion

The findings regarding the role of targeted therapies in APL, specifically All-Trans Retinoic Acid along with arsenic trioxide, emphasize the revolutionary impact of biotechnological advances.

A. Transformative Role of ATRA and ATO: ATRA and ATO have revolutionized APL treatment by addressing the molecular underpinnings of the disease. ATRA reverses the suppressive effects of the PML-RAR α fusion protein, allowing promyelocytes to differentiate again whereas ATO causes PML-RAR α to undergo apoptosis and destruction.^{4,13,30,45}

B. Biotechnology's Contributions: When it comes to improving diagnosis, comprehending disease processes and creating treatments, biotechnology has been crucial. Diagnostics techniques like FISH and PCR have enhanced the precision of APL diagnosis by detecting the PML-RAR α gene. The development of blended medications and targeted therapies like ATRA, along with ATO, is rooted in molecular research facilitated by biotechnological tools. Advancements in technology including RNA sequencing and CRISPR, have revealed novel targets and mechanisms of resistance, opening the door to more effective treatments in the future.^{10,23,38,56}

C. Comparison with Existing Literature: The efficacy of ATRA and ATO has been consistently highlighted in the literature, with studies reporting high remission rates along with survival rates. However, certain nuances emerge. Multiple clinical trials have found the supremacy of blending ATRA and ATO over traditional chemotherapy in inducing remission. Despite the great effectiveness of ATRA and ATO, resistance is still a problem in some populations. This resistance is thought to be caused by genetic mutations such as FLT3 and epigenetic changes.^{19,25}

D. New Trends and Hypotheses - Emerging trends including the exploration of Epigenetic Modulators: Research is investigating the use of hypomethylating agents to overcome resistance and to enhance therapy. Studies suggest that combining ATRA and ATO with immune-modulating agents or FLT3 inhibitors could further improve outcomes.⁴³

E. Clinical and Research Implications: Improved survival rates have become a model for precision medicine, with ATRA and ATO serving as exemplars of targeted therapy success. These therapies exhibit reduced toxicity, improving the quality of life for patients.²⁴

F. Future Therapeutic Development: Insights from molecular and genetic studies are guiding the development of therapies targeting additional pathways, such as epigenetic regulators and non-coding RNAs. Advances in genomics and proteomics are facilitating the customization of treatment plans based on individual patient profiles.⁵⁵

G. Unresolved Challenges: Despite the success of ATRA and ATO, resistance remains a significant obstacle. Mutations on the RAR α ligand binding domain have been implicated in all trans retinoic acid - ATRA resistance, while FLT3 mutations are associated with relapse. Aberrant DNA methylation and histone modifications contribute to therapy resistance, necessitating the exploration of epigenetic therapies.^{24,51}

H. Toxicity and Side Effects - Cardiotoxicity: ATO, while effective, is associated with potential cardiotoxic effects, requiring close monitoring. ATRA causes differentiation syndrome, a fatal potential complication requiring immediate intervention.^{8,46} The high price amount of ATRA

and ATO limits their accessibility in mid and low economic countries. The unavailability of diagnostic, monitoring and infrastructure in resource-limited settings hampers the optimal use of these therapies.³⁵

Conclusion

Biotechnological developments have remarkably contributed to the knowledge and understanding of the molecular and biomedical mechanisms of APL. The development of novel molecular-based target therapies, incorporation of CRISPR-mediated gene editing, second-generation sequencing, invention and use of advanced high imaging techniques, medical researchers have disentangled the complex interplay among and between the gene mutations and leukemogenesis that delve into the acute promyelocytic Leukemia (APL) pathogenesis. Target therapy, blending of ATRA and ATO, was a watershed moment in the field of APL treatment. It revolutionized the medical concept of cancer management by the quality in inducing cellular apoptosis and reducing the differentiation of cells. The development of PML-RARA proteins holds a promise for the next level improvement in patient care, treatment outcome and remission rates.

Although it is so progressive and modern, certain threats like drug resistance, difficulty in early diagnosis, high treatment cost, less availability to low-income populations and toxicity have warranted the need for further research in the field. Future research will focus on sorting out these issues: integration of multi-drugs, better understanding of cancer environments, incorporation of artificial intelligence (AI) and machine learning (ML) to foresee treatment responses and to tailor individualized treatment plans to manage APL.

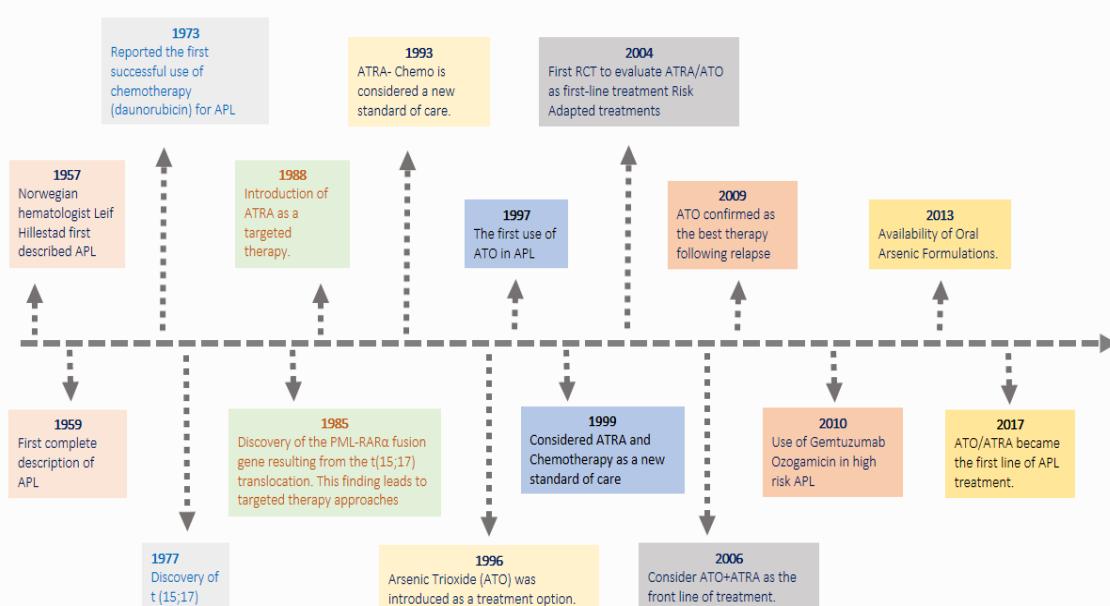


Figure 1: Landmarks in the journey of Acute Promyelocytic Leukemia

Acknowledgement

The authors thank the institute for providing the resources and a conducive environment.

References

- Arber D.A., Orazi A., Hasserjian R., Thiele J., Borowitz M.J., Le Beau M.M., Bloomfield C.D., Cazzola M. and Vardiman J.W., The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia, *Blood*, **127**(20), 2391–2405 (2016)
- Ashley N. Mays, Neil Osheroff, Yuanyuan Xiao, Joseph L. Wiemels, Carolyn A. Felix, Jo Ann W. Byl, Kandeepan Saravanamuttu, Andrew Peniket, Robert Corser, Cherry Chang, Christine Hoyle, Anne N. Parker, Syed K. Hasan, Francesco Lo-Coco, Ellen Solomon and David Grimwade, Evidence for direct involvement of epirubicin in the formation of chromosomal translocations in t(15;17) therapy-related acute promyelocytic leukemia, *Blood*, **115**(2), 326–330 (2010)
- Bashash D., Delshad M., Riyahi N., Safaroghli-Azar A., Pourbagheri-Sigaroodi A. and Momeny M., Inhibition of PI3K signaling pathway enhances the chemosensitivity of APL cells to ATO: Proposing novel therapeutic potential for BKM120, *European Journal of Pharmacology*, **841**, 10–18 (2018)
- Bashash D., Delshad M., Safaroghli-Azar A., Safa M., Momeny M. and Ghaffari S.H., Novel pan PI3K inhibitor-induced apoptosis in APL cells correlates with suppression of telomerase: An emerging mechanism of action of BKM120, *The International Journal of Biochemistry & Cell Biology*, **91**, 1–8 (2017)
- Bayram D.M., Lafta F.M. and Matti B.F., Impact of IDH mutations on DNA methylation of acute myeloid leukemia-related genes: A review article, *Journal of the Faculty of Medicine Bagdad*, **66**, 116–125 (2024)
- Bennett C. Frank and Swayze Eric E., RNA targeting therapeutics: Molecular mechanisms of antisense oligonucleotides as a therapeutic platform, *Annual Review of Pharmacology and Toxicology*, **50**, 259–293 (2010)
- Bernardi R. and Pandolfi P.P., Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies, *Nature Reviews Molecular Cell Biology*, **8**(12), 1006–1016 (2007)
- Bidikian A., Bewersdorf J.P., Kewan T., Stahl M. and Zeidan A.M., Acute Promyelocytic Leukemia in the Real World: Understanding Outcome Differences and How We Can Improve Them, *Cancers*, **16**(23), 4092 (2024)
- Borrow J. and Solomon E., Molecular analysis of the t(15;17) translocation in acute promyelocytic leukaemia, *Baillière's Clinical Haematology*, **5**(4), 833–856 (1992)
- Brockman S.R., Paternoster S.F., Ketterling R.P. and Dewald G.W., New highly sensitive fluorescence in situ hybridization method to detect PML/RARA fusion in acute promyelocytic leukemia, *Cancer Genetics and Cytogenetics*, **145**(2), 144–151 (2003)
- Castaigne S., Chomienne C., Daniel M.T., Ballerini P., Berger R., Fenaux P. and Degos L., All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia Clinical results, *Blood*, **76**(9), 1704–1709 (1990)
- Chen Z., Wang Z.Y. and Chen S.J., Acute promyelocytic leukemia: Cellular and molecular basis of differentiation and apoptosis, *Pharmacology & Therapeutics*, **76**(1–3), 141–149 (1997)
- Chim C.S., Kwong Y.L., Liang R., Chu Y.C., Chan C.H., Chan L.C., Wong K.F. and Chan T.K., All-trans retinoic acid (ATRA) in the treatment of acute promyelocytic leukemia (APL), *Hematological Oncology*, **14**(3), 147–154 (1996)
- Cho G., Lim Y. and Golden J.A., SUMO interaction motifs in Sizn1 are required for promyelocytic leukemia protein nuclear body localization and transcriptional activation, *The Journal of Biological Chemistry*, **284**(29), 19592–19600 (2009)
- Daniela Diverio, Vincenzo Rossi, Giuseppe Avvisati, Silvia DeSantis, Alessandra Pistilli, Fabrizio Pane, Giuseppe Saglio, Giovanni Martinelli, Maria Concetta Petti, Alessandra Santoro, Pier Giuseppe Pelicci, Franco Mandelli, Andrea Biondi and Francesco Lo Coco, for the GIMEMA and AIEOP Cooperative Groups, Early Detection of Relapse by Prospective Reverse Transcriptase-Polymerase Chain Reaction Analysis of the PML/RAR α Fusion Gene in Patients With Acute Promyelocytic Leukemia Enrolled in the GIMEMA-AIEOP Multicenter "AIDA" Trial, *Blood*, **92**(3), 784–789 (1998)
- De Thé H. and Chen Z., Acute promyelocytic leukaemia: novel insights into the mechanisms of cure, *Nature Reviews Cancer*, **10**, 775–783 (2010)
- De Thé H., Chomienne C., Lanotte M., Degos L. and Dejean A., The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus, *Nature*, **347**(6293), 558–561 (1990)
- Eberle J., Krasagakis K. and Orfanos C.E., Translation initiation factor eIF-4A1 mRNA is consistently overexpressed in human melanoma cells *in vitro*, *International Journal of Cancer*, **71**(3), 396–401 (1997)
- Estey E., Garcia-Manero G., Ferrajoli A., Faderl S., Verstovsek S., Jones D. and Kantarjian H., Use of all-trans retinoic acid plus arsenic trioxide as an alternative to chemotherapy in untreated acute promyelocytic leukemia, *Blood*, **107**(9), 3469–3473 (2006)
- Grignani F., Fagioli M., Alcalay M., Longo L., Pandolfi P.P., Donti E., Biondi A., Lo Coco F. and Pelicci P.G., Acute promyelocytic leukemia: from genetics to treatment, *Blood*, **83**(1), 10–25 (1994)
- Grignani F., Fagioli M., Ferrucci P.F., Alcalay M. and Pelicci P.G., The molecular genetics of acute promyelocytic leukemia, *Blood Reviews*, **7**(2), 87–93 (1993)
- Grimwade D., Langabeer S., Howe K. and Solomon E., RT-PCR in Diagnosis and Disease Monitoring of Acute Promyelocytic Leukemia (APL), *Methods in Molecular Biology (Clifton, N.J.)*, **89**, 333–358 (1998)
- Iaccarino L., Ottone T. and Alfonso V., Mutational landscape of patients with acute promyelocytic leukemia at diagnosis and relapse, *American Journal of Hematology*, **94**, 1091–1097 (2019)

24. Iland H.J., Curative strategies in APL, *Seminars in Hematology*, **56**(2), 131–138 (2019)

25. Iland H.J., Bradstock K., Supple S.G., Catalano A., Collins M., Hertzberg M., Browett P., Grigg A., Firkin F., Hugman A., Reynolds J., di Julio J., Tiley C., Taylor K., Filshie R., Seldon M., Taper J., Szer J., Moore J. and Seymour J.F., All-trans-retinoic acid, idarubicin and IV arsenic trioxide as initial therapy in acute promyelocytic leukemia (APML4), *Blood*, **120**(8), 1570–1580 (2012)

26. Jing Y., Xia L., Lu M. and Waxman S., The cleavage product deltaPML-RARalpha contributes to all-trans retinoic acid-mediated differentiation in acute promyelocytic leukemia cells, *Oncogene*, **22**(26), 4083–4091 (2003)

27. Lallemand-Breitenbach V. and de Thé H., PML nuclear bodies, *Cold Spring Harbor Perspectives in Biology*, **2**(5), a000661 (2010)

28. Larson R.A., Kondo K., Vardiman J.W., Butler A.E., Golomb H.M. and Rowley J.D., Evidence for a 15;17 translocation in every patient with acute promyelocytic leukemia, *The American Journal of Medicine*, **76**(5), 827–841 (1984)

29. Lee Y.F., Young W.J., Burbach J.P. and Chang C., Negative feedback control of the retinoid-retinoic acid/retinoid X receptor pathway by the human TR4 orphan receptor, a member of the steroid receptor superfamily, *The Journal of Biological Chemistry*, **273**(22), 13437–13443 (1998)

30. Liang C., Qiao G., Liu Y., Tian L., Hui N., Li J., Ma Y., Li H., Zhao Q., Cao W., Liu H. and Ren X., Overview of all-trans-retinoic acid (ATRA) and its analogues: Structures, activities and mechanisms in acute promyelocytic leukaemia, *European Journal of Medicinal Chemistry*, **220**, 113451 (2021)

31. Lin Richard J., Egan David A. and Evans Ronald M., Molecular genetics of acute promyelocytic leukemia, *Trends in Genetics*, **15**, 179–184 (1999)

32. Liquori A., Ibañez M., Sargas C., Sanz M.Á., Barragán E. and Cervera J., Acute Promyelocytic Leukemia: A Constellation of Molecular Events around a Single PML-RARA Fusion Gene, *Cancers*, **12**(3), 624 (2020)

33. Lo-Coco F. and Cicconi L., History of acute promyelocytic leukemia: a tale of endless revolution, *Mediterranean Journal of Hematology and Infectious Disease*, **3**(1), e2011067 (2011)

34. Mehranfar S., Zeinali S., Hosseini R., Mohammadian M., Akbarzadeh A. and Pour F., History of Leukemia: Diagnosis and Treatment from Beginning to Now, *Galen Medical Journal*, **6**(1), 12-22 (2017)

35. Meillon-Garcia L.A. and Demichelis-Gómez R., Access to Therapy for Acute Myeloid Leukemia in the Developing World: Barriers and Solutions, *Current Oncology Reports*, **22**, 125 (2020)

36. Mel F. Greaves, Ana Teresa Maia, Joseph L. Wiemels and Anthony M. Ford, Leukemia in twins: lessons in natural history, *Blood*, **102**(7), 2321–2333 (2003)

37. Mi J.Q., Chen S.J., Zhou G.B., Yan X.J. and Chen Z., Synergistic targeted therapy for acute promyelocytic leukaemia: a model of translational research in human cancer, *Journal of Internal Medicine*, **278**(6), 627–642 (2015)

38. Middlezong W., Stinnett V., Phan M., Phan B., Morsberger L., Klausner M., Ghabrial J., DeMetrick N., Zhu J., James T., Pallavajjala A., Gocke C.D., Baer M.R. and Zou Y.S., Rapid Detection of PML::RARA Fusions in Acute Promyelocytic Leukemia: CRISPR/Cas9 Nanopore Sequencing with Adaptive Sampling, *Biomolecules*, **14**(12), 1595 (2024)

39. Mistry A.R., Pedersen E.W., Solomon E. and Grimwade D., The molecular pathogenesis of acute promyelocytic leukaemia: implications for the clinical management of the disease, *Blood Reviews*, **17**(2), 71–97 (2003)

40. Mitrovic Mirjana, Tatjana Kostic, Marijana Virijevic, Teodora Karan-Djurasevic, Nada Suvajdzic Vukovic, Sonja Pavlovic and Natasa Tosic, The influence of Wilms' tumor 1 gene expression level on prognosis and risk stratification of acute promyelocytic leukemia patients, *International Journal of Laboratory Hematology*, **42**(1), 82-87 (2020)

41. Moosavi M.A. and Djavaheri-Mergny M., Autophagy: New Insights into Mechanisms of Action and Resistance of Treatment in Acute Promyelocytic leukemia, *International Journal of Molecular Sciences*, **20**(14), 3559 (2019)

42. Noguera Nélida Inés, Gianfranco Catalano, Cristina Banella, Mariadomenica Divona, Isabella Faraoni, Tiziana Ottone, William Arcese and Maria Teresa Voso, Acute promyelocytic leukemia: update on the mechanisms of leukemogenesis, resistance and on innovative treatment strategies, *Cancers*, **11**(10), 1591 (2019)

43. Poeta Gianluca D., Bruno Alfredo, Del Principe Maria I., Venditti Adriano, Maurillo Leonardo, Buccisano Francesco and Amadori Sergio, Dereulation of the mitochondrial apoptotic machinery and development of molecular targeted drugs in acute myeloid leukemia, *Current Cancer Drug Targets*, **8**(3), 207–222 (2008)

44. Polampalli S., Choughule A., Prabhash K., Amare P., Baisane C., Kabre S., Mahadik S., Shinde S., Nair R. and Banavali S., Role of RT-PCR and FISH in diagnosis and monitoring of acute promyelocytic leukemia, *Indian Journal of Cancer*, **48**(1), 60-67 (2011)

45. Powell B.L., Moser B., Stock W., Gallagher R.E., Willman C.L., Stone R.M., Rowe J.M., Coutre S., Feusner J.H., Gregory J., Couban S., Appelbaum F.R., Tallman M.S. and Larson R.A., Arsenic trioxide improves event-free and overall survival for adults with acute promyelocytic leukemia: North American Leukemia Intergroup Study C9710, *Blood*, **116**(19), 3751–3757 (2010)

46. Rogers J.E. and Yang D., Differentiation syndrome in patients with acute promyelocytic leukemia, *Journal of Oncology Pharmacy Practice*, **18**(1), 109-114 (2012)

47. Sai-Juan Chen, Zhen-Yi Wang and Zhu Chen, Acute promyelocytic leukemia: From clinic to molecular biology, *Stem Cells*, **13**(1), 22–31 (1995)

48. Santoro N., Salutari P., Di Ianni M. and Marra A., Precision Medicine Approaches in Acute Myeloid Leukemia with Adverse Genetics, *International Journal of Molecular Sciences*, **25**(8), 4259 (2024)

49. Sanz M.A., Grimwade D., Tallman M.S., Lowenberg B., Fenaux P., Estey E.H., Naoe T., Lengfelder E., Büchner T., Döhner H., Burnett A.K. and Lo-Coco F., Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European Leukemia Network, *Blood*, **113**(9), 1875–1891 (2009)

50. Sharifzadeh M., Davarian K., Hashemi M., Momeni M., Ali Moghdam K., Ghavamzadeh A., Ghafari H. and Movafagh A., The Effects of ATO on Mitochondria Apoptosis Pathway Genes Expression in APL Cell Line, *Asian Pacific Journal of Cancer Biology*, **1**(2), 37-42 (2016)

51. Stahl M. and Tallman M.S., Acute promyelocytic leukemia (APL): remaining challenges towards a cure for all, *Leukemia & Lymphoma*, **60**(13), 3107–3115 (2019)

52. Stone R.M. and Mayer R.J., The unique aspects of acute promyelocytic leukemia, *Journal of clinical oncology: official journal of the American Society of Clinical Oncology*, **8**(11), 1913–1921 (1990)

53. Sun G.L., Ouyang R.R., Chen S.J., Gu Y.Z., Huang L.A., Lu J.X. and Wang Z.Y., Treatment of acute promyelocytic leukemia with all-trans retinoic acid. A five-year experience, *Chinese Medical Journal*, **106**(10), 743–748 (1993)

54. Tallman M.S., Nabhan C., Feusner J.H. and Rowe J.M., Acute promyelocytic leukemia: evolving therapeutic strategies, *Blood*, **99**(3), 759–767 (2002)

55. Tomita Akihiro, Hitoshi Kiyoi and Tomoki Naoe, Mechanisms of action and resistance to all-trans retinoic acid (ATRA) and arsenic trioxide (As_2O_3) in acute promyelocytic leukemia, *International Journal of Hematology*, **97**, 717-725 (2013)

56. Vaghela Hiral, Parmar Kokila and Mahyavanshi Jyotindra, Biogenic Synthesis of Gold Nanoparticles using Bark Extract of Bauhinia variegata: Antibacterial and in vitro Anticancer study, *Res. J. Chem. Environ.*, **28**(1), 48-56 (2024)

57. Wang Z.Y. and Chen Z., Acute promyelocytic leukemia: from highly fatal to highly curable, *Blood*, **111**(5), 2505–2515 (2008)

58. White K.A., Yore M.M., Warburton S.L., Vaseva A.V., Rieder E., Freemantle S.J. and Spinella M.J., Negative feedback at the level of nuclear receptor coregulation. Self-limitation of retinoid signaling by RIP140, *The Journal of Biological Chemistry*, **278**(45), 43889–43892 (2003)

59. Yoshida H., Kitamura K., Tanaka K., Omura S., Miyazaki T., Hachiya T., Ohno R. and Naoe T., Accelerated degradation of PML-retinoic acid receptor alpha (PML-RARA) oncoprotein by all-trans-retinoic acid in acute promyelocytic leukemia: possible role of the proteasome pathway, *Cancer Research*, **56**(13), 2945–2948 (1996)

60. Zhu J., Lallemand-Breitenbach V. and de Thé H., Pathways of retinoic acid- or arsenic trioxide-induced PML/RAR α catabolism, role of oncogene degradation in disease remission, *Oncogene*, **20**(49), 7257-7265 (2001).

(Received 02nd February 2025, accepted 10th March 2025)